สารบัญ

บทคัดย่อภาษาไทย	Ň
กิตติกรรมประกาศ	า
สารบัญ	า
สารบัญรูปภาพ	ົຒ
สารบัญตาราง	Ĵ

บทที่ 1	บทนำ	
	1.1 ปัญหาและที่มาของโครงการ	1
	1.2 วัตถุประสงค์ของโครงงาน	1
	1.3 ขอบเขตการ โครงงาน	1
	1.4 ประโยชน์ที่คาดว่าจะได้รับ	2
	1.5 แผนการคำเนินงาน	2
บทที่ 2	ทฤษฏิและงานวิจัยที่เกี่ยวข้อง	
	2.1 ทฤษฎีที่เกี่ยวข้อง	4
	2.2 งานวิจัยที่เกี่ยวข้อง	7
	2.3 งานวิจัยเกี่ยวกับการชนชนิด	13
บทที่ 3	วิธีระเบียบวิธีไฟในต์เอเลเมนต์	
	3.1 การสร้างชิ้นงานทดสอบและกำหนดค่าคุณสมบัติต่างๆ	15
	ในการทดสอบลงในโปรแกรม	
	3.2 ผลที่ได้จากการวิเคราะห์โดยโปรแกรมอบาคัส (ABAQUS)	24

สารบัญ (ต่อ)

บทที่ 4 ผลการคำนวณและการวิเคราะห์

4.1 การวิเคราะห์ภายใต้แรงกระทำในแนวแกน (Axial Load)	28
4.1.1 การวิเคราะห์หา Mesh Independent	28
4.1.2 ผลจากการคำนวณ	30
4.2 การวิเคราะห์ภายใต้แรงกระทำด้านข้าง (Bending Load)	37
4.2.1 การวิเคราะห์หา Mesh Independent	37
4.2.2 ผลจากการคำนวณ	40

บทที่ 5 สรุปผล

5.1 สรุปผลการศึกษา	47
5.2 ปัญหาและอุปสรรค	48
บรรณานุกรม	

ภาคผนวก

50

สารบัญรูปภาพ

รูปที่ 2.1	แสดงความสัมพันธ์ระหว่างแรงและระยะยุบตัว เมื่อเกิดการการชนกระแทก	4
	และตัวแปรต่างๆที่สำคัญในการดูคซับพลังงานจากการกระแทกของโครงสร้าง	
รูปที่ 2.2	แสดงระยะยุบตัวของชิ้นงานที่มีความหนาแตกต่างกันภายใต้สภาวะขอบเขตเดียวกัน	7
รูปที่ 2.3	แสดงแบบจำลองของ Alexander JM	8
รูปที่ 2.4	แสดงการเสียรูปแบบโมคคอนเคอร์ตินา (Concertina mode) ที่ได้จากการทคสอบ	9
รูปที่ 2.5	แสดงการยุบตัวของท่อทรงกระบอก 2 ส่วน	10
รูปที่ 2.6	แสดงการเสียรูปแบบโมคไคมอนค์ (Diamond mode) ที่ได้จากการทคสอบ	11
รูปที่ 2.7	แสดงแบบจำลองของ Kecman	12
รูปที่ 2.8	แสดงกลไกการพับลงเนื่องจากแรงกดในแนวแกน	12
รูปที่ 2.9	แสดงความสัมพันธ์ทางเรขาคณิต	13
รูปที่ 2.10) แสดงกลไกการยุบตัวของหน้าตัดครึ่งวงกลมของท่อ	14
รูปที่ 3.1	ตัวอย่างหน้าตาโปรแกรม อะบาคัส	15
รูปที่ 3.2	ตัวอย่างการสร้างหน้าตัดชิ้นงานทดสอบ	16
รูปที่ 3.3	ตัวอย่างถักษณะของชิ้นงานที่ได้จากการยืด	16
รูปที่ 3.4	ตัวอย่างการกำหนดความหนาของชิ้นงานทดสอบ	17
รูปที่ 3.5	ตัวอย่างการกำหนดค่าคุณสมบัติเฉพาะของชิ้นงานทคสอบ	18
รูปที่ 3.6	ตัวอย่างชิ้นงานที่ทำการประกอบเสร็จแล้ว	19
รูปที่ 3.7	ตัวอย่างการกำหนดระยะเวลาในการทดสอบ	20
รูปที่ 3.8	ตัวอย่างการกำหนดข้อมูลที่ต้องการ ได้แก่แรง(Force/Reaction)	21
	และระยะในการกด (Displacement/Velosity/Acceletion)	
รูปที่ 3.9	ตัวอย่างการกำหนดการสัมผัสกันระหว่างชิ้นส่วนต่อชิ้นส่วน	22
รูปที่ 3.10) ตัวอย่างการกำหนดก่าสัมประสิทธิ์ความเสียดทานการสัมผัสกันของชิ้นส่วน	22
รูปที่ 3.11	ตัวอย่างการกำหนดขอบเขตความเร็วของชิ้นส่วนที่ใช้กดชิ้นงานในการทดสอบ	23
รูปที่ 3.12	ชิ้นงานที่สร้างเอเลเมนต์เรียบร้อยแล้ว	24

สารบัญรูปภาพ (ต่อ)

หน้า

ល្ង

รูปที่ 3.13	ตัวอย่างของผลที่ได้จากการวิเคราะห์ โดย	25
	โปรแกรมอบาคัส เป็นแบบภาพเคลื่อนใหว(Animation)	
รูปที่ 3.14	ตัวอย่างผลการวิเคราะห์แบบกราฟโดยในรูปเป็นการความสัมพันธ์แรงกบเวลา	25
รูปที่ 3.15	ตัวอย่างชุดข้อมูลที่ได้จากการวิเคราะห์โดยโปรแกรม อบาคัส	26
	โดยหัวขอ X คือเวลา และ force คือแรง	
รูปที่ 4.1	รูปแบบของความเสียหาย ของท่อหน้าตัดสี่เหลี่ยม	35
รูปที่ 4.2	รูปแบบของความเสียหายของท่อหน้าตัดหกเหลี่ยม	35
รูปที่ 4.3	รูปแบบของความเสียหายของท่อหน้าตัดแปดเหลี่ยม	36
รูปที่ 4.4	รูปแบบของความเสียหายของท่อหน้ำตัดวงกลม	36
รูปที่ 4.5	รูปแบบของความเสียหาย ของท่อหน้าตัดสี่เหลี่ยม	45
รูปที่ 4.6	รูปแบบของความเสียหายของท่อหน้าตัดหกเหลี่ยม	45
รูปที่ 4.7	รูปแบบของความเสียหายของท่อหน้าตัดแปดเหลี่ยม	45
รูปที่ 4.8	รูปแบบของความเสียหายของท่อหน้าตัดวงกลม	46
กราฟที่ 4.1	แสดงความสัมพันธ์ระหว่าง แรง (N) กับ ระยะยุบตัว (mm.)	28
กราฟที่ 4.2	แสดงความสัมพันธ์ระหว่าง ขนาดของ Mesh กับ พลังงานดูคซับ	29
กราฟที่ 4.3	แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm) กับแรง(N)	30
	ของพื้นที่หน้าตัดแบบสี่เหลี่ยม	
กราฟที่ 4.4	แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm) กับแรงเฉลี่ย(N)	30
	ของหน้าตัดแบบสี่เหลี่ยม	
กราฟที่ 4.5	แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm) กับแรง(N) ของหน้ำตัด	31
	แบบหกเหลี่ยม	
กราฟที่4.6	แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm) กับแรงเฉลี่ย(N) ของหน้ำตัด	31
	แบบหกเหลี่ยม	
กราฟที่ 4.7	แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm) กับแรง(N) ของหน้ำตัด	32
	แบบแปคเหลี่ยม	

สารบัญรูปภาพ (ต่อ)

กราฟที่ 4.8	แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm) กับแรงเฉลี่ย(N) ของหน้ำตัด	32
	แบบแปดเหลี่ยม	
กราฟที่ 4.9	แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm) กับแรง(N) ของหน้ำตัดแบบวงกลม	33
กราฟที่ 4.10	แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm.) กับแรงเฉลี่ย (N)	33
	ของหน้าตัดแบบวงกลม	
กราฟที่ 4.11	แสดงการเปรียบเทียบค่าการดูคซับพลังงานของท่อที่มีขนาด	34
	และหน้ำตัดแตกต่างกัน	
กราฟที่ 4.12	แสดงความสัมพันธ์ระหว่าง โมเมนต์(N.m)	38
	กับมุมที่กวาคไปจากเคิม(มุมเรเคียล)	
กราฟที่ 4.13	แสดงความสัมพันธ์ระหว่าง จำนวนเอเลเมนต์ กับ พลังงานดูดซับ	39
กราฟที่ 4.14	แสดงความสัมพันธ์ระหว่างโมเมนต์ (N.m) กับมุมที่กวาดไปจากเดิม	40
	(มุมเรเคียล) ของหน้าตัดแบบสี่เหลี่ยม	
กราฟที่ 4.15	แสดงความสัมพันธ์ระหว่างโมเมนต์เฉลี่ย(N.m) กับมุมที่กวาดไปจากเดิม	40
	(มุมเรเคียล) ของหน้าตัดแบบสี่เหลี่ยม	
กราฟที่ 4.16	แสดงความสัมพันธ์ระหว่างโมเมนต์ (N.m) กับมุมที่กวาดไปจากเดิม	41
	(มุมเรเดียล) ของหน้าตัดแบบหกเหลี่ยม	
กราฟที่ 4.17	แสดงความสัมพันธ์ระหว่างโมเมนต์เฉลี่ย(N.m) กับมุมที่กวาดไปจากเดิม	41
	(มุมเรเดียล) ของหน้าตัดแบบหกเหลี่ยม	
กราฟที่ 4.18	แสดงความสัมพันธ์ระหว่างโมเมนต์ (N.m) กับมุมที่กวาดไปจากเดิม	42
	(มุมเรเคียล) ของหน้าตัดแบบแปคเหลี่ยม	
กราฟที่ 4.19	แสดงความสัมพันธ์ระหว่างโมเมนต์เฉลี่ย(N.m) กับมุมที่กวาดไปจากเดิม	42
	(มุมเรเคียล) ของหน้าตัดแบบแปคเหลี่ยม	
กราฟที่ 4.20	แสดงความสัมพันธ์ระหว่างโมเมนต์ (N.m) กับมุมที่กวาดไปจากเดิม	43
	(มุมเรเคียล) ของหน้าตัดแบบวงกลม	
กราฟที่ 4.21	แสดงความสัมพันธ์ระหว่างโมเมนต์เฉลี่ย(N.m) กับมุมที่กวาดไปจากเดิม	43
	(มุมเรเคียล) ของหน้าตัดแบบวงกลม	
กราฟที่ 4.22	แสดงการเปรียบเทียบค่าการดูคซับพลังงานของท่อที่มีขนาดและ	44
	หน้าตัดแตกต่างกัน	

สารบัญตาราง

IJ

ตารางที่ 4.1	แสดงก่าพลังงานดูคซับที่ขนาดของเอเลเมนต์ต่างๆ (Axial Load)	28
ตารางที่ 4.2	แสดงก่าพถังงานดูคซับที่ขนาดของเอเลเมนต์ต่างๆ (Bending Load)	38