บทที่ 4

ผลการคำนวณและการวิเคราะห์

4.1 การวิเคราะห์ภายใต้แรงกระทำในแนวแกน (Axial Load)

4.1.1 การวิเคราะห์หา Mesh Independent

ในการทคลองนี้ต้องการหาค่าการดูดซับพลังงานของเหล็กเหนียว ซึ่งจะมีตัวแปรที่มีผลต่อ การดูดซับพลังงาน ได้แก่ คุณสมบัติของวัสดุ ,รูปร่าง ,ลักษณะของโหมดความเสียหาย และ อัตรา การเปลี่ยนแปลงของความเครียด (Strain rate) ซึ่งตัวแปรต่างๆ เหล่านี้ล้วนมีผลต่อการดูดซับ พลังงานของวัสดุ

ก่อนที่จะทำการคำนวณโดยใช้โปรแกรมวิเคราะห์ทางระเบียบวิธีไฟไนต์เอเลเมนต์ (ABAQUS) ได้ทำการศึกษาหาค่าขนาดของเอเลเมนต์ที่จะสร้างขึ้นเพื่อที่จะได้ทราบขนาดเอเล-เมนต์ที่เหมาะสมในการรันโปรแกรมวิเคราะห์ทางระเบียบวิธีไฟไนต์เอเลเมนต์ (ABAQUS) ทั้งนี้ เพื่อให้ข้อมูลที่ได้จากการวิเคราะห์จากโปรแกรมถูกต้องใกล้ความจริงมากที่สุดและก็ใช้เวลาในการ วิเคราะห์น้อยที่สุดอีกด้วย ค่าที่ใช้ในการวิเคราะห์หาขนาดเอเลเมนต์มีดังนี้

คุณสมบัติภายนอก

	-ใช้วัสดุหน้าตัดแบบวงกลม			
	-วัสคุมีความหนา (t)	=	2	mm.
	-รัศมี (r)	=	30	mm.
	-วัสคุมีความสูง	=	150	mm.
คุณสม	บัติวัสดุ			
	-ความหนาแน่นของวัสคุ (Density)	=	7800	$\frac{\text{kg}}{\text{m}^3}$
	-ค่า Young' Modulus	=	200	GPa.
	-ค่า Poisson's Ratio	=	0.3	
	-ค่าความเค้นครากตัว (Yield' Stress)	=	200	MPa.

โหลดที่มากระทำ

-ความเร็วในการชนกระแทก (v)	=	10	mm/s.
-เวลาในการชนกระแทก (Time)	=	8.5	S

ค่าพลังงานการดูดซับหาได้จาก พื้นที่ใต้กราฟของกราฟแสดงความสัมพันธ์ระหว่างแรง กับระยะยุบตัว แต่เนื่องจากกราฟที่ได้มีขนาดของแรงที่ไม่คงที่ทำให้ยากแก่การคำนวณหาพื้นที่ใต้ กราฟ เราจึงใช้ขนาดของแรงเฉลี่ยที่กระทำต่อพื้นที่หน้าตัดมาคูณกับระยะยุบตัวที่ยุบตัวมากที่สุด พลังงานการดูดซับ (E₄) = P_{mean} (N) × ระยะยุบตัว (m.)

กราฟที่ 4.1 แสดงความสัมพันธ์ระหว่าง แรง (N) กับ ระยะยุบตัว (mm.)

ซึ่งตารางผลการทดลองจากการวิเคราะห์ได้ผลดังนี้

.			
ขนาด Mesh	จำนวนเอเลเมนต์	ค่าพลังงานดูดซับ (J)	
2	7,154	3,630.702	
3	3,204	3,371.814	
4	1,928	3,603.620	
5	1,244	3,536.228	
6	904	4,261.797	
8	560	3,994.171	
10	389	2,663.067	
12	312	4,464.172	

ตารางที่ 4.1 แสดงก่าพลังงานดูดซับที่ขนาดของเอเลเมนต์ต่างๆ (Axial Load)

กราฟที่ 4.2 แสดงความสัมพันธ์ระหว่าง จำนวนเอเลเมนต์ กับ พลังงานดูดซับ

จากกราฟที่ 4.2 วิเคราะห์ขนาดเอเลเมนต์จะเห็นได้ว่าค่าพลังงานการดูดซับบน พื้นที่หน้าตัดแบบวงกลมจะเริ่มลู่เข้าหาคำตอบประมาณที่ขนาดของMesh เท่ากับ 5 จากนั้นผลจาก การทดสอบหรือคำตอบก็จะขึ้นๆ ลงๆ อยู่ระหว่างค่าพลังงานการดูดซับ 3,300 J - 3,700 J ซึ่งจะ อยู่ระหว่างขนาดของ Mesh เท่ากับ 2 – 5 ดังนั้นจึงเลือกใช้ขนาดของ Mesh เท่ากับ 3 เพราะว่าเป็น ขนาดที่อยู่กึ่งกลางระหว่างขนาด Mesh เท่ากับ 5 กับ ขนาดของ Mesh เท่ากับ 2 และค่าข้อมูลต่างๆ ที่ได้จากวิเคราะห์โดยใช้โปรแกรมก็น่าจะใกล้ค่าความจริงมากเนื่องจากขนาดของเอเลเมนต์มีขนาด เล็กทำให้การวิเคราะห์โดยใช้โปรแกรมก็จะมีค่าการวิเคราะห์ละเอียดมากขึ้นด้วย

4.1.2 ผลการคำนวณ

การทดสอบการชนในแนวแกนสำหรับหน้าตัดแบบต่างๆ จะได้กราฟความสัมพันธ์ของ แรง กับ ระยะยุบตัวจากวิเคราะห์โดยใช้โปรแกรมดังนี้

กราฟที่ 4.3 แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm.) กับแรง(N) ของหน้าตัดแบบสี่เหลี่ยม

กราฟที่ 4.4 แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm.)กับแรงเฉลี่ย(N) ของหน้าตัดแบบสี่เหลี่ยม

จากกราฟที่ 4.3 เป็นการแสดงความสัมพันธ์ระหว่างแรงกับระยะยุบตัวของท่อหน้าตัด สี่เหลี่ยม และกราฟที่ 4.4 แสดงความสัมพันธ์ระหว่างแรงเฉลี่ยกับระยะยุบตัวของท่อ โดยแรง เฉลี่ยจะหาได้จากกราฟที่ 4.3

กราฟที่ 4.5 แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm.) กับแรง(N) ของหน้าตัด แบบหกเหลี่ยม

กราฟที่ 4.6 แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm.) กับแรงเฉลี่ย(N) ของหน้าตัด แบบหกเหลี่ยม

กราฟที่ 4.5 แสดงความสัมพันธ์ระหว่างแรงกับระยะยุบตัวของท่อหน้ำตัดหกเหลี่ยมและ เปรียบเทียบค่าความหนาของท่อที่แตกต่างกัน จะเห็นว่าท่อที่มีความหนา 2 mm.จะให้ค่าของแรงที่ สูงกว่า 1 mm. ส่วนกราฟที่ 4.6 แสดงความสัมพันธ์ระหว่างแรงเฉลี่ยกับระยะยุบตัวของท่อ จะ เห็นได้ว่าท่อหนาขนาด 2 mm. จะให้ค่าแรงเฉลี่ยที่สูงกว่าท่อหนา 1 mm.

4.1.2.3 แปดเหลี่ยม

กราฟที่ 4.7 แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm.) กับแรง(N) ของหน้าตัด แบบแปดเหลี่ยม

กราฟที่ 4.8 แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm.) กับแรงเฉลี่ย(N) ของหน้าตัด แบบแปดเหลี่ยม

กราฟที่ 4.7 แสดงความสัมพันธ์ระหว่างแรงกับระยะยุบตัวของท่อหน้าตัดแปดเหลี่ยมและ เปรียบเทียบความหนาที่แตกต่างกัน จะเห็นว่าท่อหนา 3 mm. จะรับแรงเฉลี่ยที่สูงที่สุดตาม กราฟที่ 4.8

กราฟที่ 4.9 แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm.) กับแรง(N) ของหน้าตัดแบบวงกลม

กราฟที่ 4.10 แสดงความสัมพันธ์ระหว่างระยะยุบตัว(mm.) กับแรงเฉลี่ย (N) ของหน้าตัดแบบวงกลม

กราฟที่ 4.9 และกราฟที่ 4.10 แสดงความสัมพันธ์ระหว่างแรงและแรงเฉลี่ยกับระยะยุบตัว ของท่อหน้าตัดวงกลมตามลำดับ โดยจะเห็นว่าที่มีความหนาขนาด 3 mm. จะให้ค่าแรงและแรง เฉลี่ยสูงที่สุด

4.1.2.5 การเปรียบเทียบค่าการดูดซับพลังงานของท่อที่มีขนาดและหน้าตัด แตกต่างกัน

กราฟที่ 4.11 แสดงการเปรียบเทียบค่าการดูดซับพลังงานของท่อที่มีขนาดและหน้าตัด แตกต่างกัน จะเห็นว่าท่อหน้าตัดวงกลมจะให้ค่าการดูดซับพลังงานสูงที่สุดและท่อสี่เหลี่ยมจะให้ ก่าการดูดซับพลังงานน้อยที่สุด

4.1.2.6 เมื่อเปรียบเทียบที่โมดความเสียหาย

ในการออกแบบเมื่อเปรียบเทียบการดูดซับพลังงานของที่มีหน้าตัดแตกต่างกันนั้น โมด กวามเสียหายต้องเป็นโมดแบบคอนเคอร์ตินา (concertina) ซึ่งเป็นโมดที่ให้ก่าพลังงานดูซับดีกว่า โมดแบบอื่น โดยขั้นตอนการออกแบบขนาดของท่อในโมดคอนเคอร์ตินาก็คือ $\frac{R}{t} > 20$ และก่า กวามยาวท่อต้องไม่เกินจุดการโก่งของท่อ (Buckling criteria) จากการกำนวณสามารถแสดงผล ของโมดกวามเสียหายของท่อที่หน้าตัดแตกต่างกัน ดังนี้

1) ท่อสี่เหลี่ยม

รูปที่ 4.1 รูปแบบของความเสียหาย ของท่อหน้าตัดสี่เหลี่ยม

2) ท่อสี่หกเหลี่ยม

รูปที่ 4.2 รูปแบบของความเสียหายของท่อหน้าตัดหกเหลี่ยม

3) ท่อแปดเหลี่ยม

รูปที่ 4.3 รูปแบบของความเสียหายของท่อหน้าตัดแปดเหลี่ยม

4) ท่อวงกลม

รูปที่ 4.4 รูปแบบของความเสียหายของท่อหน้าตัดวงกลม

เมื่อเปรียบเทียบการเสียรูปแบบโมคต่างๆ จะเห็นได้ว่าเมื่อความหนาเพิ่มมากขึ้นการเสียรูป ก็จะเป็นรูปแบบโมคคอนเคอร์ตินา (Concertina mode) ซึ่งจะทำให้การคูดซับพลังงานของวัสคุมีค่า มากขึ้นด้วย แต่ถ้าวัสคุมีความหนาน้อยก็จะทำให้การเสียรูปเป็นแบบโมคแบบไคมอนค์ (Diamond mode) ซึ่งจะทำให้การคูดซับพลังงานของวัสคุมีค่าน้อย นั่นแสดงว่าการเสียรูปแบบโมคคอนเคอร์ ตินา (Concertina mode) จะให้ค่าการคูดซับพลังงานมากกว่าการเสียรูปแบบโมคแบบไคมอนค์ (Diamond mode)

4.2 การวิเคราะห์ภายใต้แรงกระทำด้านข้าง (Bending Load)

4.2.1 การวิเคราะห์หา Mesh Independent

้ก่าที่ใช้ในการวิเคราะห์หาขนาดเอเลเมนต์มีดังนี้

คุณสมบัติภายนอก

ดขอ	ש ע	
- เชวสด	หบ้าตดแบบเว	งกลม
0 1 0 0 1 1		1170100

-วัสคุมีความหนา (t)	=	1	mm.
-วัศมี (r)	=	31.83	mm.
-วัสคุมีความยาว	=	150	mm.
คุณสมบัติวัสดุ			
-ความหนาแน่นของวัสคุ (Density)	=	7800	$\frac{\mathrm{kg}}{\mathrm{m}^3}$
-ค่า Young' Modulus	=	200	GPa.
-ค่า Poisson's Ratio	=	0.3	
-ค่าความเค้นครากตัว (Yield' Stress)	=	390	MPa.

โหลดที่มากระทำ

-ความเร็วในการชนกระแทก (v)	=	10	mm	/s.
-เวลาในการชนกระแทก (Time)	=	13	S	

ค่าพลังงานการดูดซับหาได้จาก พื้นที่ใต้กราฟของกราฟแสดงความสัมพันธ์ระหว่าง โมเมนต์กับมุม(เรเดียล) แต่เนื่องจากกราฟที่ได้มีขนาดของแรงที่ไม่คงที่ทำให้ยากแก่การ คำนวณหาพื้นที่ใต้กราฟ เราจึงใช้ขนาดของโมเมนต์เฉลี่ยคูณกับมุม(เรเดียล)ที่กวาดไปเป็น ระยะทางสูงที่สุด

พลังงานการดูดซับ (E_b) = M $_{mean}$ (N.m) × Ø (radial)

กราฟที่ 4.12 แสดงความสัมพันธ์ระหว่าง โมเมนต์(N.m) กับมุมที่กวาดไปจากเดิม(มุมเรเดียล)

ซึ่งตารางผลการทดลองจากการวิเคราะห์ได้ผลดังนี้ ตารางที่ 4.2 แสดงก่าพลังงานดูดซับที่ขนาดของเอเลเมนต์ต่างๆ (Bending Load)

ขนาด Mesh	ລຳນວນເອເອນນຕໍ່	ค่าพถังงานดูคซับ	
	า เท าทเดเนเททฟ	ค่าพถังงานดูดซับ (J) 30238.93 30518.10 30765.10	
3	32,584	30238.93	
4	19,584	30518.10	
5	12,984	30765.10	
6	9,584	31248.80	
7	7,148	31421.28	

กราฟที่ 4.13 แสดงความสัมพันธ์ระหว่าง จำนวนเอเลเมนต์ กับ พลังงานดูดซับ

จากกราฟที่ 4.13 วิเคราะห์ขนาดเอเลเมนต์จะเห็นได้ว่าค่าพลังงานการดูดซับจากการขน ด้านข้างจะเริ่มลู่เข้าหาคำตอบประมาณที่ขนาดของ Mesh เท่ากับ 5 จากนั้นผลจากการทดสอบ หรือคำตอบจะค่อนข้างคงที่ อยู่ระหว่างค่าพลังงานการดูดซับ 30,238.93 J - 30765.10 J ซึ่งจะอยู่ ระหว่างขนาด Mesh เท่ากับ 5 – 3 ดังนั้นจึงเลือกใช้ขนาดของ Mesh เท่ากับ 4 เพราะว่าเป็น ขนาดที่อยู่กึ่งกลางระหว่างขนาด Mesh เท่ากับ 5 กับ ขนาด Mesh เท่ากับ 3 เช่นเดียวกับการ วิเคราะห์การชนในแนวแกน

4.2.2 ผลการคำนวณ

การทดสอบการชนด้านข้างสำหรับหน้าตัดแบบต่างๆ จะได้กราฟความสัมพันธ์ของ โมเมนต์ กับ มุม(เรเดียล) จากวิเคราะห์โดยใช้โปรแกรมดังนี้

กราฟที่ 4.14 แสดงความสัมพันธ์ระหว่างโมเมนต์ (N.m) กับมุมที่กวาดไปจากเดิม (มุมเรเดียล) ของหน้าตัดแบบสี่เหลี่ยม

กราฟที่ 4.15 แสดงความสัมพันธ์ระหว่างโมเมนต์เฉลี่ย(N.m) กับมุมที่กวาดไปจากเดิม (มุม-เรเดียล) ของหน้าตัดแบบสี่เหลี่ยม

จากกราฟที่ 4.14 เป็นการแสดงความสัมพันธ์ระหว่างโมเมนต์ (N.m) กับมุมที่กวาดไปจาก เดิม (มุมเรเดียล) ของหน้าตัดแบบสี่เหลี่ยม และกราฟที่ 4.15 แสดงความสัมพันธ์ระหว่างโมเมนต์ เฉลี่ยกับมุมที่กวาดไปจากเดิม (มุมเรเดียล) ของท่อ โดยแรงเฉลี่ยจะหาได้จากกราฟที่ 4.14

กราฟที่ 4.16 แสดงความสัมพันธ์ระหว่างโมเมนต์ (N.m) กับมุมที่กวาดไปจากเดิม (มุม-เรเดียล) ของหน้าตัดแบบหกเหลี่ยม

กราฟที่ 4.17 แสดงความสัมพันธ์ระหว่างโมเมนต์เฉลี่ย(N.m) กับมุมที่กวาดไปจากเดิม (มุมเรเดียล) ของหน้าตัดแบบหกเหลี่ยม

กราฟที่ 4.16 แสดงความสัมพันธ์ระหว่างโมเมนต์ (N.m) กับมุมที่กวาดไปจากเดิม (เรเดียล) ของหน้าตัดแบบหกเหลี่ยมและเปรียบเทียบก่ากวามหนาของท่อที่แตกต่างกัน จะเห็นว่า ท่อที่มีความหนา 3 mm จะให้ค่าของแรงที่สูงกว่า 2 mm และ 1 mm ส่วนกราฟที่ 4.17 แสดง ความสัมพันธ์ระหว่างโมเมนต์เฉลี่ย(N.m) กับมุมที่กวาดไปจากเดิม (เรเดียล) ของหน้าตัดแบบหก เหลี่ยม

4.2.2.3 แปดเหลี่ยม

กราฟที่ 4.18 แสดงความสัมพันธ์ระหว่างโมเมนต์ (N.m) กับมุมที่กวาดไปจากเดิม (มุม-เรเดียล) ของหน้าตัดแบบแปดเหลี่ยม

(มุมเรเคียล) ของหน้าตัดแบบแปดเหลี่ยม

กราฟที่ 4.18 แสดงความสัมพันธ์ระหว่างโมเมนต์ (N.m) กับมุมที่กวาดไปจากเดิม (มุม-เรเดียล) ของหน้าตัดแบบแปดเหลี่ยมและเปรียบเทียบความหนาที่แตกต่างกัน จะเห็นว่าท่อหนา 3 mm จะรับโมเมนต์เฉลี่ยที่สูงที่สุดตามกราฟที่ 4.19

4.2.2.4 วงกลม

กราฟที่ 4.20 แสดงความสัมพันธ์ระหว่างโมเมนต์ (N.m) กับมุมที่กวาดไปจากเดิม (มุมเรเดียล) ของหน้าตัดแบบวงกลม

กราฟที่ 4.21 แสดงความสัมพันธ์ระหว่างโมเมนต์เฉลี่ย(N.m) กับมุมที่กวาดไปจากเดิม (มุม-เรเดียล) ของหน้าตัดแบบวงกลม

กราฟที่ 4.20 และกราฟที่ 4.21 แสดงความสัมพันธ์ระหว่างโมเมนต์ (N.m) กับมุมที่กวาด ไปจากเดิม (มุมเรเดียล) กับแสดงความสัมพันธ์ระหว่างโมเมนต์เฉลี่ย(N.m) กับมุมที่กวาดไปจาก เดิม (มุมเรเดียล) ของท่อหน้าตัดวงกลมตามลำดับ โดยจะเห็นว่าที่มีความหนาขนาด 3 mm จะให้ ก่าแรงและแรงเฉลี่ยสูงที่สุด

4.2.2.5 การเปรียบเทียบค่าการดูดซับพลังงานของท่อที่มีขนาดและหน้าตัด แตกต่างกัน

กราฟที่ 4.22 แสดงการเปรียบเทียบค่าการดูดซับพลังงานของท่อที่มีขนาดและหน้าตัดแตกต่างกัน

กราฟที่ 4.22 แสดงการเปรียบเทียบค่าการดูดซับพลังงานของท่อที่มีขนาดและหน้าตัด แตกต่างกัน จะเห็นว่าท่อหน้าตัดแต่ละชนิดจะให้ค่าดูดซับพลังงานสูงสุดที่หน้าตัดมีความหนา 3 mm. และเมื่อเปรียบที่ความหนาเดียวกันแต่หน้าตัดต่างกันจะเห็นได้ว่าที่ความหนา 1 mm และ 3 mm. ท่อที่มีหน้าตัดแบบสี่เหลี่ยมจะให้ค่าดูดซับพลังงานสูงสุด แต่ที่ความหนา 2 mm. ท่อที่มี หน้าตัดแบบหกเหลี่ยมกลับมีค่าการดูดซับพลังงานสูงที่สุด ทั้งนี้ค่าการดูดซับพลังงานอาจจะขึ้นอยู่ กับโมดความเสียหาย

4.2.2.6 รูปแบบความเสียหายที่เกิดจากการชนด้านข้าง

้ในการออกแบบเมื่อเปรียบเทียบการดูดซับพลังงานของที่มีหน้าตัดแตกต่างกันนั้น โมด ความเสียหายก็มีผลกับค่าการดูดซับพลังงาน ซึ่งเมื่อมีการชนด้านข้างต้อง จะมีรูปแบบของความ เสียหายดังแสดงด้านถ่าง

1) ท่อสี่เหลี่ยม

รูปที่ 4.5 รูปแบบของความเสียหาย ของท่อหน้าตัดสี่เหลี่ยม

2) ท่อสี่หกเหลี่ยม

รูปที่ 4.6 รูปแบบของความเสียหายของท่อหน้าตัดหกเหลี่ยม

3) ท่อแปดเหลี่ยม

รูปที่ 4.7 รูปแบบของความเสียหายของท่อหน้ำตัดแปดเหลี่ยม

4) ท่อวงกลม

รูปที่ 4.8 รูปแบบของความเสียหายของท่อหน้าตัดวงกลม