บทที่ 4

การวิเคราะห์ผลการทดลองทางคอมพิวเตอร์

4.1 ข้อมูลเกี่ยวกับการทดลองและผลการทดลอง

4.1.1 การสอบเทียบโปรแกรม ABAQUS

จากผลงานการวิจัยของ M.D. White และ N. Jones [1] ได้ทำการทคลองไว้ซึ่งได้นำเสนอ ไปแล้วในบทที่ผ่านมาได้ถูกนำมาใช้ในการสอบเทียบ (Verification) โปรแกรม ABAQUS ที่ใช้งาน อยู่ทำให้ทราบว่าผลการจำลองการเสียหายของชิ้นงานจะให้ก่าพลังงานดูดซับที่สูงกว่าก่าพลังงาน ดูดซับที่ได้จากการทคลองทุกกรณี ในกรณีนี้จึงทำให้เกิดการนำก่าคงที่มาคูณแก้ไขให้ได้ผลการ ทคลองที่ถูกต้อง ก่ากงที่มีก่าเท่ากับ 0.845 ซึ่งเป็นก่าเฉลี่ยของชิ้นงานที่มีขนาคกวามกว้างของขอบ (flange) 15 มิลิเมตร กวามกว้าง (a) 60 มิลิเมตร กวามสูง (b) 60 มิลิเมตร กวามหนา (t) 1.2 มิลิเมตร ระยะห่างระหว่างรอยเชื่อม(d) 25 มิลิเมตร กวามยาว(L) 333,250 มิลิเมตร

คำอธิบายเกี่ยวกับสัญลักษณ์ใช้ในบทนี้เท่านั้น สัญลักษณ์ A, B, และ C ใช้แสดงแทนก่า ความหนา 1.2, 1.6, และ 2.0 มิลิเมตร ตามลำคับ เช่น

ชิ้นงานที่ใช้ในการทดสอบได้กล่าวไว้ในบทที่ 3 ความยาวของชิ้นงานเท่ากันทุกชิ้นงาน24 มิลิเมตร การจำลองการยุบตัวทางคอมพิวเตอร์ได้กำหนดการยุบตัวที่ 70% ของความยาวชิ้นงานซึ่งมีค่า เท่ากับ 168 มิลิเมตร แต่การคำนวณผลของโปรแกรมไม่สามารถให้ค่าความยาวในการกดชิ้นงานที่ เท่ากันได้มีค่าอยู่ระหว่าง 166-168 มิลิเมตร แต่อย่างไรก็ตามไม่มีผลกับการเปรียบเทียบค่าพลังงาน ดูดซับแต่อย่างใด

จากการใช้โปรแกรม ABAQUS จำลองการยุบตัวของชิ้นงานทำให้ทราบรูปแบบการยุบตัว อีกทั้งก่าภาระที่ทำให้เกิดการยุบตัวที่ระยะต่างๆซึ่งสามารถนำมาสร้างกราฟเพื่อหาก่าพลังดูคซับได้ ดังนี้

ระยะยุบตัว (มิลลิเมตร) รูปที่4.1 แสดงความสัมพันธ์ระหว่างก่าภาระและระยะยุบตัว ซึ่งกราฟที่ได้จะมีลักษณะคล้ายกราฟนี้แต่ก่าภาระเฉลี่ยจะแตกต่างกันตามความสามารถใน การรับแรงกดของแต่ละชิ้นงาน จะหาก่าพลังงานดูดซับได้

4.1.2 ผลการทดลองจากโครงสร้างรูปหมวกปิด

đ			1 9	4	99
ตารางท4 1	ผลการทดลอง	โครงสร้า	งราโหบากา	ไดความหาเว 1	2 บลเบตร
1110 1411 141	menti la minero v	0110 4610 1	19 11 10 911 1	J T I I J I J I J I J I J I J I J I J I	L. 22 01 61 60 01 FI 0

	f	L	displacement	Ea	Ea X 0.845	Pm	Mode of
code	(mm)	(mm)	(mm)	(kJ)	(kJ)	(kN)	failure
A64-85	15	240	168.117	2.462	2.080	14.649	Regular
A64-70	15	240	168.287	1.606	1.357	9.547	Euler
A64-55	15	240	168.592	2.352	1.987	14.094	Regular
A64-40	15	240	166.967	2.922	2.469	17.501	Irregular
A64-25	15	240	167.754	2.691	2.274	16.044	Regular
A66-85	15	240	168.107	2.360	1.994	14.039	Regular
A66-70	15	240	166.896	2.646	2.236	15.855	Regular
A66-55	15	240	168.519	2.263	1.912	13.434	-
A66-40	15	240	168.059	3.068	2.592	18.256	Irregular
A66-25	15	240	166.799	2.796	2.363	16.768	Irregular
A74-85	15	240	168.117	2.386	2.016	14.192	Irregular
A74-70	15	240	168.825	2.128	1.798	12.682	Euler
A74-55	15	240	167.899	2.539	2.145	15.122	Irregular
A74-40	15	240	167.611	2.399	2.027	14.314	Euler
A74-25	15	240	168.299	2.700	2.282	16.054	Irregular
A76-85	15	240	167.346	2.305	1.948	13.775	Regular
A76-70	15	240	168.865	2.497	2.110	14.791	Euler
A76-55	15	240	167.607	2.430	2.053	14.491	Irregular
A76-40	15	240	167.390	2.900	2.451	17.325	Irregular
A76-25	15	240	168.350	2.691	2.274	15.987	Regular

	f	L	displacement	Ea	Ea X 0.845	Pm	Mode of
code	(mm)	(mm)	(mm)	(kJ)	(kJ)	(kN)	failure
B64-85	15	240	168.063	3.584	3.028	21.311	Regular
B64-70	15	240	167.954	4.307	3.639	25.647	Regular
B64-55	15	240	168.425	4.202	3.551	24.833	Euler
B64-40	15	240	167.981	4.523	3.822	26.926	Irregular
B64-25	15	240	167.383	4.284	3.620	25.594	Regular
B66-85	15	240	168.507	3.729	3.151	22.133	Irregular
B66-70	15	240	167.178	4.168	3.522	24.932	Irregular
B66-55	15	240	168.001	3.819	3.227	22.732	Irregular
B66-40	15	240	168.659	5.421	4.581	32.146	Regular
B66-25	15	240	168.631	5.087	4.299	30.168	Irregular
B74-85	15	240	168.411	4.136	3.495	25.632	Regular
B74-70	15	240	167.630	2.792	2.359	16.659	Euler
B74-55	15	240	167.280	4.099	3.464	24.505	Regular
B74-40	15	240	168.572	5.733	4.844	34.264	Regular
B74-25	15	240	168.763	4.429	3.743	26.245	Irregular
B76-85	15	240	168.064	3.929	3.320	23.383	Regular
B76-70	15	240	166.403	4.162	3.517	25.017	Regular
B76-55	15	240	168.474	4.034	3.409	23.947	Irregular
B76-40	15	240	167.689	5.394	4.558	31.902	Regular
B76-25	15	240	167.621	4.494	3.797	26.812	Regular

ตารางที่4.2 ผลการทคลอง โครงสร้างรูปหมวกปีคความหนา 1.6 มิลิเมตร

	f	L	displacement	Ea	Ea X 0.845	Pm	Mode of
code	(mm)	(mm)	(mm)	(kJ)	(kJ)	(kN)	failure
C64-85	15	240	167.550	2.770	2.341	16.532	Euler
C64-70	15	240	168.634	6.157	5.203	36.155	Regular
C64-55	15	240	168.361	6.113	5.165	36.309	Irregular
C64-40	15	240	168.426	5.982	5.055	35.518	Euler
C64-25	15	240	168.305	7.694	6.501	45.717	Euler
C66-85	15	240	168.274	5.493	4.642	32.646	Irregular
C66-70	15	240	166.149	5.744	4.854	34.573	Regular
C66-55	15	240	168.814	5.784	4.887	34.263	Regular
C66-40	15	240	167.495	6.019	5.086	35.937	Regular
C66-25	15	240	166.366	7.574	6.400	45.526	Regular
C74-85	15	240	167.983	3.317	2.803	19.748	Euler
C74-70	15	240	168.264	6.060	5.121	36.015	Regular
C74-55	15	240	167.312	7.058	5.964	42.188	Regular
C74-40	15	240	167.210	8.655	7.313	51.765	Regular
C74-25	15	240	167.871	7.204	6.087	42.916	Regular
C76-85	15	240	168.017	5.607	4.738	33.376	Irregular
C76-70	15	240	166.157	4.648	3.928	27.978	Irregular
C76-55	15	240	166.931	6.590	5.569	39.479	Regular
C76-40	15	240	168.494	7.538	6.370	44.737	Regular
C76-25	15	240	166.824	7.347	6.208	44.044	Regular

ตารางที่4.3 ผลการทคลอง โครงสร้างรูปหมวกปีคความหนา 2.0 มิลิเมตร

4.2 การวิเคราะห์ผลการทดลองทางคอมพิวเตอร์

4.2.1 การวิเคราะห์ด้านระยะห่างระหว่างรอยเชื่อมของโครงสร้างรูปหมวกปิด

เป็นการเปรียบเทียบชิ้นงานที่มีขนาดเดียวกัน ความหนาเท่ากัน แต่มีระยะห่างระหว่างรอย เชื่อมต่างกัน สามารถนำมาวิเคราะห์โดยใช้กราฟได้ผลการทดลองดังนี้

รูปที่4.2 แสดงการเปรียบเทียบก่าพลังงานดูคซับกับระยะห่างระหว่างรอยเชื่อม ที่ความหนา 1.2 มิลิเมตร

จากกราฟผลการทคลองเกี่ยวกับระยะห่างระหว่างรอยเชื่อมที่ความหนา 1.2 มิลิเมตรผลการ ทคลองจะเห็นได้ว่าแนวโน้มของค่าพลังงานดูดซับจะมีค่าเพิ่มขึ้นเมื่อระยะห่างระหว่างรอยเชื่อม ลคลง ยกเว้นที่ระยะห่างระหว่างรอยเชื่อมเท่ากับ 40 มิลิเมตร สามารถทำให้เกิดค่าพลังงานดูดซับที่ ดีแต่ทั้งนี้ไม่สามารถวิเคราะห์จากระยะห่างระหว่างรอยเชื่อมเท่านั้น แต่ต้องดูผลของรูปแบบการ ยุบตัวที่เกิดขึ้นด้วย เพราะผลของรูปแบบมีผลอย่างมากกับค่าพลังงานดูดซับที่เกิดขึ้น เช่นที่ ค่า ความหนา1.2 มิลิเมตร สูง 70 มิลิเมตร กว้าง 40 มิลิเมตร (A74-40) ที่เส้นกราฟสีเหลืองได้ตกลงจาก กลุ่มเนื่องจากเกิด An Euler-type global bending mode ถ้าดูจากเส้นแนวโน้มค่าพลังดูดซับ แปรผกผันกันระยะห่างรอยเชื่อม

ระยะห่างรอยเชื่อม (มิลิเมตร)

รูปที่4.3 แสดงการเปรียบเทียบค่าพลังงานดูดซับกับระยะห่างระหว่างรอยเชื่อม ที่ความหนา 1.6 มิลิเมตร

จากกราฟจะสังเกตได้ว่าเป็นลักษณะเดียวกันกับรูปที่4.2 คือเส้นกราฟทำให้ทราบว่า ที่ ระยะห่างระหว่างรอยเชื่อมเท่ากับ 40 มิลิเมตร ให้ค่าพลังงานดูดซับสูงสุดแต่ทั้งนี้ต้องมีรูปแบบการ ยุบตัวที่เป็น Regular Progressive Collapse และเป็นที่สังเกตอีกอย่างหนึ่งคือระห่างระหว่างรอย เชื่อมที่มีค่าน้อยเมื่อมีการยุบตัวเกิดขึ้นจะให้ค่าพลังงานดูดซับที่ดีกว่าชิ้นงานที่มีระยะห่างระหว่าง รอยเชื่อมมากเป็นไปตามเส้นกราฟแนวโน้ม

ระยะห่างรอยเชื่อม (มิลิเมตร)

รูปที่4.4 แสดงการเปรียบเทียบค่าพลังงานดูดซับกับระยะห่างระหว่างรอยเชื่อม ที่กวามหนา 2.0 มิลิเมตร

กราฟที่เห็นจากรูปที่4.4 จะแตกต่างไปจากกราฟรูปที่ผ่านมาคือที่ระยะห่างระหว่างรอย เชื่อม 40 มิลิเมตรไม่ได้ให้ค่าพลังดูดซับสูงสุดทุกตัว ถ้าพิจารณาไปถึงเรื่องของรูปแบบการยุบตัว ของความหนา 2.0 มิลิเมตร ความสูง 60 มิลิเมตร ความกว้าง 40 มิลิเมตร (C64-40) เกิด An Eulertype global bending mode ซึ่งรูปแบบนี้ทำให้เกิดการโก่งตัวระหว่างการยุบ ค่าภาระที่ทำให้เกิดการ ยุบตัวมีก่าน้อย อาจจะบอกได้ว่ารูปแบบการยุบตัวของโครงสร้างรูปหมวกปิดนี้ไม่ได้ขึ้นอยู่กับ พารามิเตอร์แค่เพียงตัวเดียว จะเกี่ยวข้องไปถึงเรื่องของความหนาด้วยที่ทำให้รูปแบบการยุบตัวของ โครงสร้างรูปหมวกปิดเปลี่ยนไปด้วย

4.2.2 การวิเคราะห์ด้านขนาดและรูปร่างของโครงสร้างรูปหมวกปิด

งนาดและรูปร่างของโครงสร้างรูปหมวกปิดจะแตกต่างกันอยู่ 4 รูปแบบ ดังนี้ 60x40, 60x60, 70x40, และ 70x60 (ทุกค่าอยู่ในหน่วยมิลิเมตร) กราฟที่จะแสดงต่อไปนี้เป็นกราฟที่ควบคุม ระยะห่างระหว่างรอยเชื่อมโดยมีเป้าหมายที่จะเปรียบเทียบว่างนาดที่แตกต่างกันของโครงสร้างรูป หมวกปิดมีผลกระทบอย่างไรกับค่าพลังงานดูดซับ

พื้นที่หน้าตัดโครงสร้างรูปหมวกปิด (มิลิเมตร^2)

รูปที่4.5 แสดงก่าพลังงานกับขนาดชิ้นงานที่ระยะห่างระหว่างรอยเชื่อมเท่ากัน (24=60x40 มิลิเมตร x มิลิเมตร, 36=60x60 มิลิเมตร x มิลิเมตร, 28=70x40 มิลิเมตร x มิลิเมตร, และ 42=70x60 มิลิเมตร x มิลิเมตร) ที่ความหนา 1.2 มิลิเมตร

พื้นที่หน้าตัดโครงสร้างรูปหมวกปิด (มิลิเมตร^2) รูปที่ 4.6 แสดงก่าพลังงานกับขนาดชิ้นงานที่ระยะห่างระหว่างรอยเชื่อมเท่ากัน (24=60x40 มิลิเมตร x มิลิเมตร, 36=60x60 มิลิเมตร x มิลิเมตร, 28=70x40 มิลิเมตร x มิลิเมตร, และ 42=70x60 มิลิเมตร x มิลิเมตร) ที่กวามหนา 1.6 มิลิเมตร

จากกราฟรูปที่ 4.5และ 4.6 ไม่สามารถสรุปเกี่ยวกับกรณีของขนาดได้เพราะเส้นกราฟไม่บ่ง ชี้ให้เห็นได้ว่าขนาดของชิ้นงานในลักษณะใดให้ค่าพลังงานดูดซับสูงหรือต่ำ ทำให้ทราบเพียงว่า ผลกระทบที่เกิดขึ้นจากการเปลี่ยนขนาดมีน้อยมาก ลักษณะของเส้นแนวโน้มคือ เมื่อขนาด พื้นที่หน้าตัดเพิ่ม ค่าพลังงานดูดซับเพิ่มขึ้นเล็กน้อย เนื่องจากผลที่ได้ทำให้ค่าพลังงานดูดซับมาก หรือน้อยนั้นขึ้นอยู่กับหลายปัจจัย โดยเฉพาะอย่างยิ่งเรื่องของรูปแบบการยุบตัวที่มีผลอย่างมากมาย ถ้าการยุบตัวเกิดขึ้นในรูปแบบเดียวกันทั้งหมดอาจจะทำให้เราสามารถสรุปกรณีนี้ก็เป็นได้

4.2.3 การวิเคราะห์ด้านความหนาของโครงสร้างรูปหมวกปิด

โดยปกติแล้วเมื่อความหนาเพิ่มขึ้นค่าพลังงานดูดซับต้องเพิ่มขึ้นตามในลักษณะแปรผัน โดยตรงต่อกัน แต่เนื่องจากความหนาจะโยงไปถึงเรื่องของน้ำหนักที่เพิ่มขึ้นมาดังนั้นค่าความหนาที่ มากขึ้นสามารถเพิ่มพลังงานดูดซับได้จริงแต่ควรจะดูในเรื่องของพลังงานดูดซับต่อน้ำหนักด้วยอีก อย่างหนึ่งเพราะส่วนมากแล้วความต้องการคือ ความแข็งแรงแต่ต้องน้ำหนักเบา จากผลการทดลอง นำมาวิเคราะห์ได้ดังนี้

รูปที่4.7 แสดงความสัมพันธ์ระหว่างความหนากับค่าพลังงานดูดซับที่ขนาด ชิ้นงาน 60x40 มิลิเมตร x มิลิเมตร

ค่าความหนาชิ้นงาน (มิลิเมตร)

รูปที่4.8 แสดงความสัมพันธ์ระหว่างความหนากับค่าพลังงานดูดซับที่ขนาด ชิ้นงาน 60x60 มิลิเมตร x มิลิเมตร

จากกราฟจะเห็นได้ว่าเป็นกราฟลักษณะเชิงเส้นคือค่าพลังงานดูดซับจะแปรผันตรงกับค่า ความหนาดังที่กล่าวไว้ข้างต้นแต่ที่กราฟเส้นสีชมพูที่ขนาด 60x40 มิลิเมตรx มิลิเมตร ระยะห่าง ระหว่างรอยเชื่อม 85 มิลิเมตรนั้น เส้นกราฟตกลงอย่างเห็นได้ชัดเจน เมื่อตรวจสอบดูที่ผลการ ทดลองพบว่าเกิด An Euler-type global bending mode ที่กวามหนา 2.0 มิลิเมตร

4.2.4 การวิเคราะห์ด้านความหนาเปรียบเทียบกันน้ำหนักของโครงสร้างรูปหมวกปิด

เมื่อวัสคุมีความหนาขึ้นพลังงานดูดซับจะเพิ่มขึ้นตามไปด้วยซึ่งเป็นผลดีในแง่ของพลังงาน ดูดซับแต่ในอุตสาหกรรมรมรถยนต์นั้นมีความต้องการโครงสร้างที่มีความแข็งแรงและน้ำหนักเบา จึงจำเป็นต้องมีพารามิเตอร์อีกตัวที่มาใช้ในการชี้วัดคือ พลังงานดูดซับจำเพาะที่นำน้ำหนักของตัว ชิ้นงานเองมาหารค่าพลังงานดูดซับที่ได้ โดยชิ้นงานมีนำหนักดังนี้

,	v	ע
M 15 1914.4	แสดงนาหนก	บองหน่งเห
-		

ชิ้นงาน	น้ำหนัก
A64	485
A66	570
A74	520
A76	605
B64	740
B66	780
B74	740
B76	905
C64	850
C66	990
C74	917
C76	1020

จากตาราง4.4 จะเห็นได้ว่าชิ้นงานจะมีน้ำหนักแตกต่างกันออกไปจึงจำเป็นต้องน้ำหนักนี้ ไปคิดเทียบกับค่าพลังงานดูดซับที่ได้ แสดงดังกราฟต่อไปนี้

รูปที่4.9 แสดงก่าพลังงานดูดซับจำเพาะกับประเภทชิ้นงานที่ระยะห่างรอยเชื่อมเดียวกัน (24=60x40 มิลิเมตร x มิลิเมตร, 36=60x60 มิลิเมตร x มิลิเมตร, 28=70x40 มิลิเมตร x มิลิเมตร และ 42=70x60 มิลิเมตร x มิลิเมตร) ที่กวามหนา 1.2 มิลิเมตร

พื้นที่หน้าตัดโครงสร้างรูปหมวกปิด (มิลิเมตร^2)

รูปที่4.10 แสดงค่าพลังงานดูดซับจำเพาะกับประเภทชิ้นงานที่ระยะห่างรอยเชื่อมเดียวกัน (24=60x40 มิลิเมตร x มิลิเมตร, 36=60x60 มิลิเมตร x มิลิเมตร, 28=70x40 มิลิเมตร x มิลิเมตร และ 42=70x60 มิลิเมตร x มิลิเมตร) ที่กวามหนา 1.6 มิลิเมตร

จากกราฟแยกสรุปเป็น 3 ส่วน ส่วนที่ 1 ค่าพลังงานดูดซับต่อน้ำหนักมากที่ชิ้นงานขนาด พื้นที่หน้าตัด 24 มิลิเมตร^2 และ 28 มิลิเมตร^2 ตามลำดับเนื่องจากชิ้นงานสองขนาดนี้ให้พลังงาน ดูดซับที่ใกล้เคียงกับชิ้นงานทุกขนาดแต่มีน้ำหนักเบาเมื่อเทียบกับชิ้นงานอื่น จึงทำให้ค่าพลังงานดูด ซับจำเพาะสูง ส่วนที่ 2 เส้นกราฟที่มีระยะห่างรอยเชื่อม 70 มิลิเมตร ที่ชิ้นงานขนาดพื้นที่หน้าตัด 28 มิลิเมต^2 นั้นมีรูปแบบการยุบตัวแบบโก่งตัว (Euler mode) และส่วนที่ 3 ระยะห่างรอยเชื่อม 40 มิลิ เมตร ไม่เป็นไปตามทั้งสองกรณีข้างต้นเนื่องจากให้ค่าพลังงานดูดซับจำเพาะที่พื้นที่หน้าตัด 36 มิลิ เมตร ^2 สูง จากรูปที่4.9 ที่ชิ้นงานขนาดพื้นที่หน้าตัด 28 มิลิเมตร^2 และระยะห่างระหว่างรอยเชื่อม 70 มิลิเมตร นั้นมีรูปแบบการยุบตัวแบบโก่งตัว (Euler mode) อย่างไรก็ตาม เส้นแนวโน้มที่เกิดขึ้น ทำให้ทราบถึงนำน้ำหนักที่เพิ่มขึ้นเมื่อพื้นที่หน้าตัดเพิ่ม ดังนั้นเมื่อเปรียบเทียบอ่าพลังงานดูดซับ จำเพาะกับขนาดพื้นที่หน้าตัดจึงทำให้ค่าพลังงานดูดซับจำเพาะลดลงเมื่อพื้นที่หน้าตัดเพิ่มขึ้น

พื้นที่หน้าตัดโครงสร้างรูปหมวกปิด (มิลิเมตร^2)

รูปที่4.11 แสดงก่าพลังงานดูดซับจำเพาะกับประเภทชิ้นงานที่ระยะห่างรอยเชื่อมเดียวกัน (24=60x40 มิลิเมตร x มิลิเมตร, 36=60x60 มิลิเมตร x มิลิเมตร, 28=70x40 มิลิเมตร x มิลิเมตร และ 42=70x60 มิลิเมตร x มิลิเมตร) ที่กวามหนา 2.0 มิลิเมตร งากกราฟกวามหนา 2.0 มิลิเมตร จะเห็นได้อย่างชัดเจนเกี่ยวกับข้อสรุปของส่วนที่ 1 ด้านบนยกเว้นเส้นกราฟสีชมพูที่เกิดการยุบตัวแบบการโก่งตัวที่พื้นที่หน้าตัด 24 มิลิเมตร^2 และ 28 มิลิเมตร^2

รูปที่4.12 แสดงความสัมพันธ์ระหว่างกวามหนากับก่าพลังงานดูดซับจำเพาะที่ขนาด ชิ้นงาน 60x40 มิลิเมตร x มิลิเมตร

จากกราฟเมื่อเขียนกราฟระหว่างความหนากับค่าพลังงานดูดซับจำเพาะแล้วเห็นว่ากราฟที่ ได้ออกมายังคงเหมือนกับรูปที่4.6 เนื่องจากค่าความหนาที่ใช้ในการทดลองนี้ไม่ได้แตกต่างกันมาก นักจึงทำให้กราฟยังไม่มีการเปลี่ยนแปลง