# บทที่4 ผลที่ได้และการวิเคราะห์

ในบทนี้เป็นการอธิบายถึงวิธีการได้มาของก่าความดันตกคร่อมในไซโคลนจนถึง การวิเคราะห์ผลที่ได้โดยเริ่มตั้งแต่การกำนวณหาก่าความดันตกคร่อมในไซโคลนของแต่ละทฤษฎี ที่นำมาพิจารณาในโครงงานนี้และนำผลที่ได้จากการกำนวณไปเปรียบเทียบกับก่าที่ได้จาก การทำนายของ CFD และผลการทคลองจริง [9] เพื่อสามารถเลือกได้ว่าทฤษฎีไหนเหมาะสมที่จะ นำมาใช้ในการพิจารณาหาก่าความดันตกกร่อมในไซโคลนและใช้ในการออกแบบไซโคลน ต่อไป

#### 4.1 การคำนวณหาความดันตกคร่อมในไซโคลน

ในหัวข้อนี้เป็นการอธิบายวิธีการคำนวณหาค่าความดันตกคร่อมในไซโคลน ซึ่งมีวิธีการ คำนวณที่ไม่ยุ่งยากซับซ้อนเนื่องจากสมการที่ใช้ในการคำนวณหาก่าความดันตกคร่อมในไซโคลน เป็นสมการที่มีรูปแบบอย่างง่าย

ເນື່ອ

| ΔP                | = ค่าความคันตกคร่อมในไซโคลน, Pa              |
|-------------------|----------------------------------------------|
| χ                 | = Pressure Drop Coefficient                  |
| $\mathcal{O}_{g}$ | = ค่าความหนาแน่นของอากาศ, kg/m <sup>3</sup>  |
| V <sub>i</sub>    | = ความเร็วที่ทางเข้าไซโคลน, m/s <sup>2</sup> |

จะเห็นว่าจากรูปแบบของสมการ ค่าที่มีผลทำให้ค่าความดันตกคร่อมในไซโคลน เปลี่ยนแปลงไปอย่างมากคือค่าของ <sub>vi</sub> และ a ซึ่งค่า a นี้จะเป็นฟังก์ชันกับขนาดของไซโคลน เป็นไปตามทฤษฎีของ 4 ทฤษฎีที่นำมากำนวณดังนี้

- 1. Shepherd ແລະ Lapple [4]
- 2. Casal แถะ Martinez [4]
- 3. Dirgo [4]
- 4. Coker[4]

รูปร่างของไซโคลนที่นำมาใช้ในการคำนวณมี 2 รูปร่างด้วยกันคือ Stairmand High Efficiency และ Bohnet [4] ซึ่งแต่ละรูปร่างก็จะมีผลทำให้ค่าของ Pressure Drop Coefficient (*a* ) เปลี่ยนไปตามทฤษฎีทั้ง 4 ที่นำมาพิจารณา

#### 4.2 วิธีการคำนวณหาค่า Pressure Drop Coefficient

จากตารางที่ 3.1 จะได้ค่าของ lpha ดังการคำนวณต่อไปนี้

1. Shepherd และ Lapple [4]

$$\alpha = 16 \frac{ab}{D_e^2}$$
จากสมการที่ 3.2  

$$\alpha = \frac{16 \times 0.5 \times 0.2}{0.5^2} = 6.4$$
: Stairmand High Efficiency  

$$\alpha = \frac{16 \times 0.533 \times 0.133}{0.333^2} = 10.22846$$
: Bohnet

2. Casal llos Martinez [4]

$$\alpha = 11.3 \left(\frac{ab}{D_e^2}\right)^2 + 3.33$$
จากสมการที่ 3.3  

$$\alpha = 11.3 \left(\frac{0.5 \times 0.2}{0.5^2}\right)^2 + 3.33 = 5.138$$
: Stairmand High Efficiency  

$$\alpha = 11.3 \left(\frac{0.533 \times 0.133}{0.333^2}\right)^2 + 3.33 = 7.94806$$
: Bohnet

3. Dirgo [4]

$$\alpha = 20 \left( \frac{ab}{D_e^2} \right) \left[ \frac{S/D}{(H/D)(h/D)(B/D)} \right]^{1/3}$$
 จากสมการที่ 3.4  

$$\alpha = 20 \left( \frac{0.5 \times 0.2}{0.5^2} \right) \left[ \frac{0.5}{(4)(1.5)(0.375)} \right]^{1/3} = 4.84565 \qquad : \text{Stairmand High Efficiency}$$

$$\alpha = 20 \left( \frac{0.533 \times 0.133}{0.333^2} \right) \left[ \frac{0.733}{(2.58)(0.693)(0.333)} \right]^{1/3} = 13.70322 \qquad : \text{Bohnet}$$

4. Coker [4]  

$$\alpha = 9.47 \frac{ab}{D_e^2}$$
 จากสมการที่ 3.5

$$\alpha = 9.47 \frac{0.5 \times 0.2}{0.5^2} = 3.788$$
  
$$\alpha = 9.47 \frac{0.533 \times 0.133}{0.333^2} = 6.05397$$

: Stairmand High Efficiency

: Bohnet

#### 4.3 วิธีการหาค่าความหนาแน่นของอากาศและความเร็ว

ค่าความหนาแน่นของอากาศนั้นเป็นฟังก์ชันกับอุณหภูมิ แต่ค่าความหนาแน่นนี้มี การเปลี่ยนแปลงน้อยมากเมื่อมีการเปลี่ยนค่าของอุณหภูมิ ค่าของความหนาแน่นสามารถหาได้จาก รูปที่ 4.14 ซึ่งจะได้ค่าของความหนาแน่นที่เป็นฟังก์ชันกับอุณหภูมิดังนี้

 $ho_g = 360.77819 imes T^{-1.00336}$  เมื่ออุณหภูมิมีหน่วยเป็น K โดยช่วงของอุณหภูมิที่ใช้เป็น 300-500 K

ส่วนในกรณีของความเร็วนั้นจะทำการกำหนดค่าความเร็วที่ใช้ในการคำนวณโดยใช้ช่วง ความเร็วจาก 5-25 m/s

#### 4.4 วิธีการคำนวณหาค่าความดันตกคร่อม

ในหัวข้อนี้สามารถที่จะหาก่ากวามคันตกกร่อมในไซโกลนได้โดยใช้สมการต่างๆ ที่ได้ กล่าวมาแล้วข้างต้น ซึ่งมีวิธีการกำนวณดังนี้

กรณี ความเร็วลม 5 m/s

อุณหภูมิ 300 K=>  $ho_{g} = 1.179766 kg \, / \, m^{3}$ 

ใช้ทฤษฎีของ Shepherd และ Lapple [4]

รูปร่างของไซโคลนเป็นแบบ Stairmand High Efficiency

้จะได้ค่าความดันตกคร่อมในไซโคลนดังนี้

$$\Delta P = \alpha \frac{\rho_g v_i^2}{2}$$

แทนค่าในสมการจะได้

 $\Delta P = \frac{6.4 \times 1.179766 \times 5^2}{2} = 94.38128 Pa$ 

กรณี ความเร็วลม 10 m/s

อุณหภูมิ 300 K=>  $\rho_g = 1.179766 kg / m^3$ 

ใช้ทฤษฎีของ Shepherd และ Lapple [4]

รูปร่างของไซโคลนเป็นแบบ Stairmand High Efficiency จะได้ค่าความดันตกคร่อมในไซโคลนดังนี้

$$\Delta P = \alpha \frac{\rho_g v_i^2}{2}$$
แทนค่าในสมการจะได้  
$$\Delta P = \frac{6.4 \times 1.179766 \times 10^2}{6.4 \times 1.179766 \times 10^2} = 377.57$$

$$\Delta P = \frac{6.4 \times 1.179766 \times 10^2}{2} = 377.52512 Pa$$

กรณี ความเร็วลม 15 m/s อุณหภูมิ 300 K=>  $ho_g = 1.179766 kg \, / \, m^3$ ใช้ทฤษฎีของ Shepherd และ Lapple [4] รูปร่างของไซโคลนเป็นแบบ Stairmand High Efficiency

้จะได้ค่าความดันตกคร่อมในไซโคลนดังนี้

$$\Delta P = \alpha \frac{\rho_g v_i^2}{2}$$

แทนค่าในสมการจะได้

$$\Delta P = \frac{6.4 \times 1.179766 \times 15^2}{2} = 849.43152 Pa$$

กรณี ความเร็วลม 20 m/s

อุณหภูมิ 300 K=>  $ho_g$  = 1.179766kg /  $m^3$ 

ใช้ทฤษฎีของ Shepherd และ Lapple [4]

รูปร่างของไซโคลนเป็นแบบ Stairmand High Efficiency จะได้ค่าความดันตกคร่อมในไซโคลนดังนี้

$$\Delta P = \alpha \frac{\rho_{g} v_{i}^{2}}{2}$$
แทนค่าในสมการจะได้  
$$\Delta P = \frac{6.4 \times 1.179766 \times 20^{2}}{2} = 1510.10048 Pa$$

กรณี ความเร็วลม 25 m/s

อุณหภูมิ 300 K=>  $ho_{g}$  = 1.179766kg /  $m^{3}$ 

ใช้ทฤษฎีของ Shepherd และ Lapple [4]

รูปร่างของไซโคลนเป็นแบบ Stairmand High Efficiency

้จะได้ค่าความดันตกคร่อมในไซโคลนดังนี้

$$\Delta P = \alpha \frac{\rho_g v_i^2}{2}$$
แทนค่าในสมการจะใต้
$$\Delta P = \frac{6.4 \times 1.179766 \times 25^2}{2} = 2359.532 Pa$$

ส่วนในกรณีอื่นๆ ก็ใช้วิธีการคำนวณตามวิธีการที่กล่าวมานี้ ซึ่งสามารถสรุปผลที่ได้ใน รูปแบบตารางต่อไปนี้

ตารางที่ 4.1 ค่าความคันตกคร่อมในไซโคลน (Pa) ของทฤษฎีต่างๆ กรณีรูปร่างของ Stairmand High Efficiency, อุณหภูมิทางเข้าไซโคลนมีค่า 300 K

| ความเร็ว | Shepherd & Lapple | Casal & Martinez | Dirgo    | Coke     |
|----------|-------------------|------------------|----------|----------|
| (m/s)    | Model[4]          | Model[4]         | Model[4] | Model[4] |
| 5        | 94.38             | 77.39            | 72.99    | 57.06    |
| 10       | 377.53            | 309.56           | 291.95   | 228.23   |
| 15       | 849.43            | 696.52           | 656.88   | 513.51   |
| 20       | 1510.10           | 1238.26          | 1167.79  | 912.91   |
| 25       | 2359.53           | 1934.78          | 1824.67  | 1426.42  |

ตารางที่ 4.2 ค่าความคันตกคร่อมในไซโคลน (Pa) ของทฤษฎีต่างๆ กรณีรูปร่างของ Stairmand High Efficiency, ความเร็วทางเข้าไซโคลนมีค่า15 m/s

| อุณหภูมิ | Shepherd & Lapple | Casal & Martinez | Dirgo    | Coke     |
|----------|-------------------|------------------|----------|----------|
| (K)      | Model[4]          | Model[4]         | Model[4] | Model[4] |
| 300      | 867.60            | 696.52           | 656.88   | 513.51   |
| 350      | 749.18            | 601.45           | 567.23   | 443.42   |
| 400      | 670.07            | 537.94           | 507.33   | 396.60   |
| 450      | 606.05            | 486.55           | 458.86   | 358.71   |
| 500      | 553.18            | 444.10           | 418.83   | 327.41   |

ตารางที่ 4.3 ค่าความดันตกคร่อมในไซโคลน (Pa) ของทฤษฎีต่างๆ กรณีรูปร่างของ Bohnet, อุณหภูมิทางเข้าไซโคลนมีค่า 300 K

| ความเร็ว | Shepherd & Lapple | Casal & Martinez | Dirgo    | Coke     |
|----------|-------------------|------------------|----------|----------|
| (m/s)    | Model[4]          | Model[4]         | Model[4] | Model[4] |
| 5        | 154.07            | 119.72           | 206.39   | 72.99    |
| 10       | 616.27            | 478.87           | 825.54   | 291.95   |
| 15       | 1386.60           | 1077.46          | 1857.47  | 656.88   |
| 20       | 2465.06           | 1915.49          | 3302.17  | 1167.79  |
| 25       | 3851.66           | 2992.95          | 5159.63  | 1824.67  |

ตารางที่ 4.4 ค่าความคันตกคร่อมในไซโคลน (Pa) ของทฤษฎีต่างๆ กรณีรูปร่างของ Bohnet, ความเร็วทางเข้าไซโคลนมีค่า15 m/s

| อุณหภูมิ | Shepherd &      | Casal & Martinez | Dirgo Model | Coke Model |
|----------|-----------------|------------------|-------------|------------|
| (K)      | LappleModel [4] | Model [4]        | [4]         | [4]        |
| 300      | 1386.60         | 1077.46          | 1857.47     | 820.69     |
| 350      | 1197.34         | 930.40           | 1603.95     | 708.68     |
| 400      | 1070.91         | 832.15           | 1434.57     | 633.84     |
| 450      | 968.59          | 752.65           | 1297.51     | 573.28     |
| 500      | 884.10          | 686.99           | 1184.32     | 523.27     |

### 4.5 การทำนายค่าความดันตกคร่อมภายใต้เงื่อนไขที่มีความเร็วแตกต่างกัน

การวัดค่าของความดันตกคร่อมภายในไซโคลนจะยึดถือเอาช่วงของความเร็วที่ทางเข้าจาก 5 m/s ถึง 25m/s ตามการออกแบบไซโคลนของ Stairmand High efficiency และ5m/s ถึง 15m/s ของ Bohnet ซึ่งผลที่ได้จากการคำนวณเชิงตัวเลขนี้เป็นผลมาจากจำนวนของ grid ของไซโคลนที่ได้ จากการ mesh และตัวแปรอื่นที่เกี่ยวข้องกับการคำนวณทางของไหล(CFD) ทฤษฎีทั้ง4 ทฤษฎี Shepherd และ Lapple [4], Casal และ Martinez [4], Dirgo [4], และ Coker [4] ที่นำมาใช้ในการ คำนวณหาค่าของความดันตกคร่อมภายในไซโคลนนั้น จะนำผลที่ได้จากการคำนวณมาเปรียบเทียบ กับผลที่ได้จากการทดลอง [9] และผลที่ได้จากการคำนวณทางของไหล หรือ Computation Fluid Dynamic (CFD) ของ FLUENT6.1



รูปที่ 4.1 Mesh ของพื้นผิว (A) Stairmand high efficiency และ (B) Bohnet cyclone

จากรูปที่ 4.1 แสดงความหนาแน่นของจำนวน Mesh ที่ใช้ใน Model ของ (A) Stairmand high efficiency และ (B) Bohnet cyclone ซึ่งผลจากการจำลองของ CFD ผลที่ได้นั้นขึ้นอยู่กับ จำนวน Mesh ด้วย ดังนั้นจึงมีการเปลี่ยนแปลงจำนวน Mesh ที่ใช้ในการจำลองของ CFD เมื่อมี การใช้จำนวน Mesh ที่มากขึ้นกีจะทำให้ใช้เวลาในการจำลองของ CFD มากขึ้นซึ่งสิ่งที่ต้องตามมา คือต้องใช้กำลังเครื่องเพื่อใช้ในการคำนวณเพิ่มขึ้นและจำนวนของ Mesh เท่าใดถึงจะเหมาะสมเพื่อ ใช้ในการจำลองของ CFD ดังนั้นจึงสามารถกล่าวได้ว่าจำนวน Mesh ที่เหมาะสมที่ต้องการนั้น ขึ้นอยู่กับว่าผลเฉลยของสิ่งที่ต้องการนั้น ต้องการให้มีความแม่นยำมากน้อยแค่ไหนและยังต้อง คำนึงถึงประสิทธิภาพของเครื่องคอมพิวเตอร์ที่ใช้คำนวณด้วย

สิ่งที่ได้จากการจำลองของ CFD นั้นสามารถที่จะแสดงออกมาในรูปแบบของ Graphics หรือ รูปแบบของข้อมูลที่ต้องการได้พอสมควร ไม่ว่าจะเป็นการแสดงค่าของ Map Static Pressure, ค่าของ Contours Velocity, ค่าของ Contours Vector Velocity, แสดงเส้นทางการไหลของของไหล Path Line, แม้กระทั่ง Animation ต่างๆเพื่อใช้ในการนำเสนอ ซึ่งผลที่ได้จากการจำลองของ CFD ในกรณีที่มีการเปลี่ยนแปลงค่าความเร็วที่ทางเข้าของไซโคลนได้แสดงดังรูปต่อไปนี้



Contours of Static Pressure (pascal)

Mar 12, 2006 FLUENT 6.2 (3d, segregated, RSM)

รูปที่ 4.2 Contours of Static Pressure (Geometry Bohnet, Velocity 5 m/s, Temperature 293 K at

Inlet Cyclone)



รูปที่ 4.3 Contours of Velocity (Geometry Bohnet, Velocity 5 m/s, Temperature 293 K)



Velocity Vectors Colored By Velocity Magnitude (m/s)

Mar 12, 2006 FLUENT 6.2 (3d, segregated, RSM)





รูปที่ 4.5 Velocity Vector Colored by static Pressure (Geometry Bohnet, Velocity 5 m/s, Temperature 293 K at Inlet Cyclone)

จากรูปที่ 4.2 อธิบายได้ว่าค่าของ Static Pressure มีค่าสูงมากที่บริเวณผนังของไซโคลน เนื่องจากบริเวณผนังนี้ความเร็วต่ำมากและจากรูปที่ 4.4 แสดง Vector ของความเร็วซึ่งลักษณะของ การไหล จะเป็นดังนี้คือ จะเกิดกระแสหมุนวนภายในไซโคลน เมื่อกระแสนี้เคลื่อนที่จนเกือบถึง ปลายโคน (บริเวณทางออกของฝุ่น) อากาศจะหมุนกลับเป็นกระแสวนที่เล็กกว่าเดิมและเคลื่อนที่ ขึ้นไปตามตัวไซโคลนจนออกไปที่ท่อออก ที่อยู่ส่วนบนของไซโคลน นั่นคือจะมีกระแสหมุนวน 2 ชั้นเกิดขึ้นในทิศทางเดียวกัน



Contours of Velocity Magnitude (m/s)

Mar 12, 2006 FLUENT 6.2 (3d, segregated, RSM)

รูปที่ 4.6 Contours of Velocity Magnitude (Geometry Stairmand High Efficiency, Velocity

10 m/s, Temperature 293 K at Inlet Cyclone)



Contours of Static Pressure (pascal)

Mar 12, 2006 FLUENT 6.2 (3d, segregated, RSM)

รูปที่ 4.7 Contours of Static Pressure (Geometry Stairmand High Efficiency, Velocity

10 m/s, Temperature 293 K at Inlet Cyclone)



รูปที่ 4.8 Velocity Vector Colored by Static Pressure (Geometry Stairmand High Efficiency, Velocity 10 m/s, Temperature 293 K at Inlet Cyclone)



Velocity Vectors Colored By Velocity vlagnitude (m/s)

Mar 12, 2006 FLUENT 6.2 (3d, segregated, RSM)

รูปที่ 4.9 Velocity Vector Colored by Velocity Magnitude (Geometry Stairmand High Efficiency, Velocity 10 m/s, Temperature 293 K at Inlet Cyclone)

#### ผลที่ได้จากการทำนายของ CFD ได้แสดงดังตารางต่อไปนี้

ตารางที่ 4.5 แสดงก่ากวามคันตกกร่อม (Pa) ภายในไซโกลนที่ได้จากการทำนายทาง CFD, ทฤษฎี ทั้ง 4 ทฤษฎี และผลการทดลองที่สภาวะอุณหภูมิ 293 K Stairmand High Efficiency

| Velocity | Shepherd  | Casal &   | Dirgo | Coke  | CED  | CED  | Б          |
|----------|-----------|-----------|-------|-------|------|------|------------|
| (m/s)    | & Lapple  | Martinez  | Model | Model | CFD  | CFD  | Experiment |
|          | Model [4] | Model [4] | [4]   | [4]   | KSM  | KNG  | data[9]    |
| 5        | 96        | 77        | 73    | 57    | 79   | 77   | 87         |
| 10       | 386       | 310       | 292   | 228   | 336  | 328  | 337        |
| 15       | 868       | 697       | 657   | 514   | 810  | 811  | 785        |
| 20       | 1542      | 1238      | 1168  | 913   | 1467 | 1472 | 1407       |
| 25       | 2410      | 1935      | 1825  | 1426  | 2312 | 2382 | 2205       |





จากรูปที่ 4.10 แสดงให้เห็นว่าแนวโน้มของความคันตกคร่อมมีแนวโน้มไปทางเดียวกันคือ มีความคันตกกร่อมเพิ่มขึ้นเมื่อความเร็วเพิ่มขึ้นถึงแม้ผลของการจำลองของ CFD ในการพิจารณา นั้นในอากาศไม่มีฝุ่นละอองในการพิจารณา แต่แนวโน้มของผลที่ได้กับผลการทดลองจริงนั้นและ ก่าที่ได้จากการกำนวณมีแนวโน้มไปในทางเดียวกัน

| velocity(m/s) | Shepherd& | Casal &   | Dirgo     | Coke      | CFD  | CFD  |
|---------------|-----------|-----------|-----------|-----------|------|------|
|               | Lapple    | Martinez  | Model [4] | Model [4] | RSM  | RNG  |
|               | Model [4] | Model [4] |           |           |      |      |
| 5             | 154       | 120       | 206       | 73        | 131  | 134  |
| 10            | 616       | 479       | 826       | 292       | 569  | 607  |
| 15            | 1387      | 1077      | 1857      | 657       | 1340 | 1478 |
| 20            | 2465      | 1915      | 3302      | 1168      | 2450 | 2693 |
| 25            | 3852      | 2993      | 5160      | 1825      | 3988 | 4300 |

ตารางที่ 4.6 แสดงค่าความดันตกคร่อม (Pa) ภายในไซโคลนที่ได้จากการทำนายทาง CFD, ทฤษฎี ทั้ง 4 ทฤษฎี และผลการทคลองที่สภาวะอุณหภูมิ 293 K Bohnet



รูปที่ 4.11 กราฟความคันตกคร่อมกับความเร็ว (T=293 K, Bohnet)

จากรูปที่ 4.11 แนวโน้มของความคันตกคร่อมยังคงเป็นไปในทางเคียวกัน เมื่อความเร็ว เพิ่มขึ้นความคันตกคร่อมก็จะเพิ่มขึ้น

## 4.6 การทำนายค่าความดันตกคร่อมภายใต้เงื่อนไขที่มีอุณหภูมิแตกต่างกัน

การวัดค่าของความดันตกคร่อมภายในไซโคลนที่ได้จากการเปลี่ยนค่าของอุณหภูมิจะ ยึดถือเอาช่วงของอุณหภูมิจาก 300 ถึง 500K ตามการออกแบบไซโคลนของ Stairmand High Efficiency และ Bohnet การเปรียบเทียบผลที่ได้การจำลองลักษณะการไหลวนแบบปั่นป่วนและ ทฤษฎีทั้ง 4 ทฤษฎีนั้นได้แสดงดังรูปที่ 4.12 และ 4.13 ผลที่ได้จากการทำนายของ CFD ได้แสดงดังตารางต่อไปนี้

| Temperature | Shepherd& | Casal &   | Dirgo     | Coke      | CFD      | CFD      |
|-------------|-----------|-----------|-----------|-----------|----------|----------|
| (K)         | Lapple    | Martinez  | Model [4] | Model [4] | RSM      | RNG      |
|             | Model [4] | Model [4] |           |           |          |          |
| 300         | 849.4316  | 681.9343  | 643.1332  | 502.7573  | 760.0451 | 761.5160 |
| 350         | 727.7072  | 584.2124  | 550.9715  | 430.71169 | 635.5310 | 636.0686 |
| 400         | 636.4582  | 510.9566  | 481.8838  | 376.70367 | 552.8148 | 543.9943 |
| 450         | 565.5167  | 454.0039  | 428.1717  | 334.71522 | 491.7383 | 470.2311 |
| 500         | 508.7849  | 408.4589  | 385.2181  | 301.13707 | 403.2781 | 399.7282 |

ตารางที่ 4.7 แสดงค่าความคันตกกร่อม (Pa) ภายในไซโคลนที่ได้จากการทำนายทาง CFD, ทฤษฎี ทั้ง 4 ทฤษฎี และผลการทคลองที่ความเร็ว 15 m/s Stairmand High Efficiency



รูปที่ 4.12 กราฟความดันตกคร่อมกับความเร็ว (T=293 K, Stairmand High efficiency)

| Temperature | Shepherd& | Casal &   | Dirgo     | Coke      | CFD       | CFD       |
|-------------|-----------|-----------|-----------|-----------|-----------|-----------|
| (K)         | Lapple    | Martinez  | Model [4] | Model [4] | RSM       | RNG       |
|             | Model [4] | Model [4] |           |           |           |           |
| 300         | 1357.554  | 1054.895  | 1818.742  | 803.5054  | 1307.1940 | 1400.3190 |
| 350         | 1163.016  | 903.7277  | 1558.114  | 688.3623  | 1070.5160 | 1153.0390 |
| 400         | 1017.182  | 790.4071  | 1362.739  | 602.0468  | 913.2512  | 956.2028  |
| 450         | 903.8042  | 702.3061  | 1210.844  | 534.941   | 795.1224  | 899.1917  |
| 500         | 813.1358  | 631.8517  | 1089.374  | 481.2765  | 705.9285  | 694.7008  |

ตารางที่ 4.8 แสดงก่าความคันตกกร่อม (Pa) ภายในไซโกลนที่ได้จากการทำนายทาง CFD, ทฤษฎี ทั้ง 4 ทฤษฎี และผลการทดลองที่ความเร็ว 15 m/s Bohnet



รูปที่ 4.13 กราฟความคันตกคร่อมกับความเร็ว (T=293 K, Bohnet)

จากรูปที่ 4.12 และรูปที่ 4.13 แสดงให้เห็นว่าเมื่ออุณหภูมิเพิ่มขึ้นจะทำให้กวามดันตกคร่อม ลดลงเนื่องมาจากกวามหนาแน่นของอากาศมีก่าลดลงเพราะกวามหนาแน่นเป็นฟังก์ชันกับอุณหภูมิ ดังรูปที่ 4.14 และแนวโน้มของกวามดันตกกร่อมมีแนวโน้มไปในทางเดียวกันคือมีก่าลดลง เหมือนกันเมื่ออุณหภูมิเพิ่มขึ้นทั้งในรูปร่างของ Stairmand High Efficiency และ Bohnet การคำนวณค่าของความดันตกคร่อมภายในไซโคลนระหว่างทางเข้าและทางออกของ แบบจำลองที่แตกต่างกันนั้นได้แสดงดังรูปที่ 4.10, 4.11, 4.12 และ 4.13 จะเห็นได้ว่า เมื่อนำมาผลที่ ได้จากการจำลองลักษณะการไหลวนแบบปั่นป่วนของ CFD มาเปรียบเทียบกับผลที่ได้จาก การทดลองและผลที่ได้จากการคำนวณของทฤษฎีทั้ง 4 ทฤษฎีนั้น ได้แสดงให้เห็นถึงผลของ การจำลองลักษณะการไหลวนแบบปั่นป่วนของการคำนวณทาง CFD โดยใช้ FLUENT ว่าสามารถ ที่จะใช้ประมาณก่าความดันตกคร่อมภายในไซโคลนได้

FLUENT CODE ที่ใช้ทฤษฎี RSM Turbulent สามารถคำนวณผลของความคันตกคร่อม ภายในไซโคลนได้เป็นอย่างดีและสามารถที่จะใช้ในการออกแบบไซโคลนได้ภายใต้เงื่อนไขที่ให้มี สภาวะการทำงานต่างกันได้ ในการคำนวณทาง CFD จะเห็นว่าผลที่ได้นั้นมีค่าความผิดพลาดจาก ผลที่ได้จากการทดลองน้อยกว่า 4.36% ที่มีเงื่อนไขว่า ที่ทางเข้ามีค่าของความเร็วที่แตกต่างกันและ การจำลองลักษณะการไหลวนแบบปั่นป่วนโดยใช้ทฤษฎี RNG turbulence จะให้ค่าความผิดพลาด เมื่อเปรียบเทียบกับผลการทดลองไม่เกิน 6.02%

ค่าของความคันตกคร่อมภายในไซโคลนสามารถที่จะกล่าวได้ว่าเป็นฟังก์ชันกับความเร็ว (Velocity Head) ที่ทางเข้าของไซโคลน ทฤษฎีจากการทดลองที่ถูกใช้สำหรับคำนวณค่าความคัน ตกคร่อมภายในไซโคลน จะแปรผันตามสภาวะที่ทำการกำหนดให้กับไซโคลน ทฤษฎีของ Shepherd และ Lapple [4] และ Dirgo [4] แสดงผลของการคำนวณค่าของความคันตกคร่อมภายใน ไซโคลนได้เป็นอย่างดีภายใต้การกำหนดค่าสภาวะของความเร็ว (Velocity Head) ที่ทางเข้าของ ไซโคลนแตกต่างกันโดยมีค่าความผิดพลาดไปจากผลการทดลองประมาณ 10-34

ก่ากวามดันตกกร่อมภายในไซโคลนจะมีก่าที่ลดลงเมื่ออุณหภูมิสูงขึ้น เนื่องมาจากอิทธิพล หลักกือก่ากวามหนาแน่นของอากาศ ซึ่งเมื่ออุณหภูมิของอากาศมีก่าเพิ่มขึ้นจะเป็นผลทำให้ก่าของ กวามหนาแน่นลดลง ดังรูปที่ 4.14 และในขณะเดียวกันนี้ก็จะทำให้ก่าของกวามหนืดของอากาศ เพิ่มขึ้นด้วย



#### Density of Air vs. Temperature

รูปที่ 4.14 กราฟความสัมพันธ์ของความหนาแน่นกับอุณหภูมิ[10]

ภายใต้การเปลี่ยนแปลงสภาวะของอุณหภูมินี้ ทฤษฎีของ Shepherd และ Lapple[4] ให้ค่า การคำนวณค่าความคันตกคร่อมภายในไซโคลนซึ่งมีค่าความผิดพลาคกับผลการทคลองประมาณ 10.87% ทฤษฎีของ Casal และ Martinez[4], และ Coker[4] เมื่อนำมาคำนวณค่าความคันตกคร่อม ภายในไซโคลนที่สภาวะของอุณหภูมิที่เปลี่ยนแปลงจะได้ค่าความผิดพลาคกับผลการทคลอง ประมาณ 10.99 และ 34.36% ตามลำคับ จากทฤษฎีของ Casal และ Martinez[4], และทฤษฎีของ Coker[4] ผลที่ได้จากการคำนวณของทฤษฎีทั้ง 2 ภายใต้สภาวะที่แตกต่างกันในการคำนวณและ สึกษาผลที่ได้ของค่าความคันตกคร่อมภายในไซโคลน ทำให้ได้ข้อเสนอว่าทฤษฎีทั้ง 2 นี้ไม่เหมาะที่ จะนำไปใช้ในการออกแบบไซโคลนที่มีค่าความคันตกคร่อมภายในไซโคลนค่่า แต่เหมาะสำหรับ ไซโคลนที่มีค่าความคันตกกร่อมภายในไซโคลนสูงๆแต่สำหรับทฤษฎีของ Shepherd และ Lapple[4] เหมาะสมกับช่วงสภาวะทำงานที่มีอุณหภูมิต่ำกว่า 500K



Contours of Static Pressure (pascal)

Mar 13, 2006 FLUENT 6.2 (3d, segregated, RSM)





Contours of Velocity Magnitude (m/s)

Mar 13, 2006 FLUENT 6.2 (3d, segregated, RSM)

รูปที่ 4.16 Contours of Velocity Magnitude Bohnet, Velocity 15 m/s, Temperature 340 K)



Contours of Static Pressure (pascal)

Mar 13, 2006 FLUENT 6.2 (3d, segregated, RSM)





Contours of Velocity Magnitude (m/s)

Mar 13, 2006 FLUENT 6.2 (3d, segregated, RSM)





รูปที่ 4.19 Contours of Static Pressure Bohnet, Velocity 15 m/s, Temperature 500 K)



Contours of Velocity Magnitude (m/s)

Mar 13, 2005 FLUENT 6.2 (3d, segregated, RSM)

รูปที่ 4.20 Contours of Velocity Magnitude Bohnet, Velocity 15 m/s, Temperature 500 K)





Mar 13, 2006 FLUENT 6.2 (3d, segregated, RSM)

รูปที่ 4.21 Contours of Static Pressure Stairmand High Efficiency, Velocity 15 m/s,







Mar 13, 2006 FLUENT 6.2 (3d, segregated, RSM)

รูปที่ 4.22 Contours of Velocity Magnitude Stairmand High Efficiency, Velocity 15 m/s,

Temperature 340 K)



Contours of Static Pressure (pascal)

Mar 13, 2006 FLUENT 6.2 (3d, segregated, RSM)

รูปที่ 4.23 Contours of Static Pressure Stairmand High Efficiency, Velocity 15 m/s,

Temperature 460 K)





Mar 13, 2006 FLUENT 6.2 (3d, segregated, RSM)



Temperature 360 K)





Mar 13, 2006 FLUENT 6.2 (3d, segregated, RSM)





Temperature 500 K)



Mar 13, 2006 FLUENT 6.2 (3d, segregated, RSM)

รูปที่ 4.26 Contours of Velocity Magnitude Stairmand High Efficiency, Velocity 15 m/s,

Temperature 500 K)

### 4.7 การคำนวณหาค่าความผิดพลาดของข้อมูล

จากตารางที่ 4.5 แสดงค่าความคันตกคร่อม (Pa) ภายในไซโคลนที่ได้จากการทำนายทาง CFD, ทฤษฎีทั้ง 4 ทฤษฎี และผลการทดลองที่สภาวะอุณหภูมิ 293 K Stairmand High Efficiency

| velocity | Shepherd  | Casal &   | Dirgo | Coke  | CFD   | CFD   | Experiment |
|----------|-----------|-----------|-------|-------|-------|-------|------------|
| (m/s)    | & Lapple  | Martinez  | Model | Model | RSM   | RNG   | data[9]    |
|          | Model [4] | Model [4] | [4]   | [4]   | Model | Model |            |
|          |           |           |       |       |       |       |            |
| 5        | 96        | 77        | 73    | 57    | 79    | 77    | 87         |
| 10       | 386       | 310       | 292   | 228   | 336   | 328   | 337        |
| 15       | 868       | 697       | 657   | 514   | 810   | 811   | 785        |
| 20       | 1542      | 1238      | 1168  | 913   | 1467  | 1472  | 1407       |
| 25       | 2410      | 1935      | 1825  | 1426  | 2312  | 2382  | 2205       |

$$\text{%Deviation} = \frac{\sum_{i=1}^{N} \left\| \left( \Delta P_{e,i} \right) \operatorname{cal} - \left( \Delta P_{e,i} \right) \operatorname{exp} \right\| / \left( \Delta P_{e,i} \right) \operatorname{exp} \right\|}{N} \times 100$$

เมื่อ %Deviation = เปอร์เซ็นต์ก่ากวามผิดพลาด (ΔP<sub>e,i</sub>)<sub>cal</sub> = ก่ากวามดันตกกร่อมจากการกำนวณ (ΔP<sub>e,i</sub>)<sub>exp</sub> = ก่ากวามดันตกกร่อมจากการผลการทดลอง N = จำนวนของข้อมูลที่ใช้

จาก

#### ตัวอย่างการคำนวณ

| velocity(m/s) | А    | В    | (A - B) / B |
|---------------|------|------|-------------|
| 5             | 77   | 87   | 0.114943    |
| 10            | 310  | 337  | 0.080119    |
| 15            | 697  | 785  | 0.112102    |
| 20            | 1238 | 1407 | 0.120114    |
| 25            | 1935 | 2205 | 0.122449    |
|               |      | SUM  | 0.549726    |

การคำนวณก่าความผิดพลาดของ Shepherd & Lapple Model

A = ค่าความดันตกคร่อมจากการคำนวณ

B = ค่าความดันตกคร่อมจากการผลการทดลอง

จากสูตร

$$\text{%Deviation} = \frac{\sum_{i=1}^{N} \left\| \left( \Delta P_{e,i} \right) cal - \left( \Delta P_{e,i} \right) cap \right\|}{N} \times 100$$

จะได้

%Deviation =  $(0.549725831/5) \times 100$ = 10.99451662 % <u>Ans</u>

ตารางที่ 4.9 แสดงก่ากวามผิดพลาดของแต่ละ Model

| Shepherd &  | Casal &      | Dirgo Model | Coke Model   | CFD RSM      | CFD RNG      |
|-------------|--------------|-------------|--------------|--------------|--------------|
| Lapple      | Martinez     | [4]         | [4]          | Model        | Model        |
| Model [4]   | Model [4]    |             |              |              |              |
| 10.870014 % | 10.9945166 % | 15.994172 % | 34.3576454 % | 4.35877032 % | 6.02478943 % |